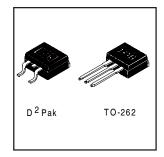
International Rectifier

- Advanced Process Technology
- Surface Mount (IRFZ46NS)
- Low-profile through-hole (IRFZ46NL)
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description


Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.


The through-hole version (IRFZ46NL) is available for low-profile applications.

IRFZ46NSPbF IRFZ46NLPbF

HEXFET® Power MOSFET

V _{DSS} = 55V							
$R_{\rm DS(on)} = 0.0165\Omega$							
I _D = 53A®							

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	53 ®		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10VS	37	Α	
I _{DM}	Pulsed Drain Current ① ⑤	180		
P _D @T _A = 25°C	Power Dissipation	3.8	W	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	107	W	
	Linear Derating Factor	0.71	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	28	A	
E _{AR}	Repetitive Avalanche Energy①	11	mJ	
dv/dt	Peak Diode Recovery dv/dt 3 5	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		∞	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	0C/M
R _{eJA}	Junction-to-Ambient (PCB Mounted,steady-state)**		40	°C/W

IRFZ46NS/LPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

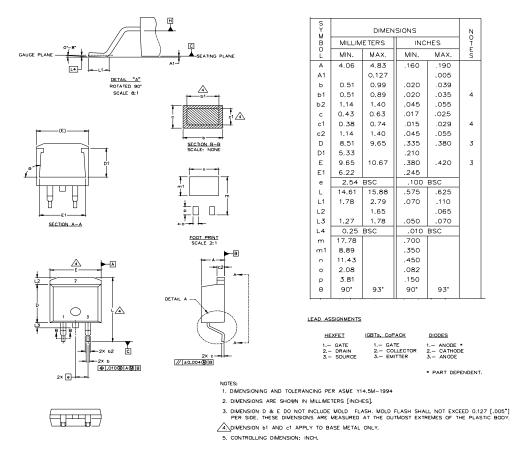
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D =1mA [©]
R _{DS(on)}	Static Drain-to-Source On-Resistance			.0165	Ω	V _{GS} =10V, I _D = 28A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	19			S	V _{DS} = 25V, I _D = 28A (3)
1	Drain-to-Source Leakage Current			25	μА	$V_{DS} = 55V$, $V_{GS} = 0V$
I _{DSS}	Brain to Gource Leakage Guiterit			250		$V_{DS} = 44V, V_{GS} = 0V, T_J = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	114	$V_{GS} = -20V$
Qg	Total Gate Charge			72		I _D = 28A
Q _{gs}	Gate-to-Source Charge			11	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			26		V_{GS} = 10V, See Fig. 6 and 13 \oplus \odot
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	RiseTime		76		no	$I_D = 28A$
t _{d(off)}	Turn-Off Delay Time		52		ns	$R_G = 12\Omega$
t _f	FallTime		57			$R_D = 0.98\Omega$, See Fig. 10 \oplus \odot
La	Internal Source Inductance		7.5		- nH	Between lead,
L _S						and center of die contact
C _{iss}	Input Capacitance		1696			$V_{GS} = 0V$
Coss	Output Capacitance		407		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		110			$f = 1.0MHz$, See Fig. 5 \circ
E _{AS}	Single Pulse Avalanche Energy ②		5836	152⑦		I _{AS} = 28A, L = 389mH

Source-Drain Ratings and Characteristics

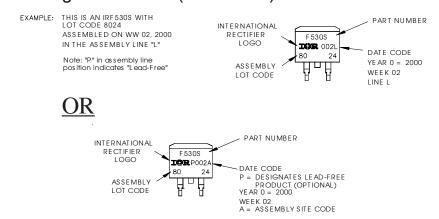
	Parameter	Min.	Тур.	Max.	Units	Conditions															
Is	Continuous Source Current			E0.		MOSFET symbol															
	(Body Diode)	53	- 53	A	showing the																
I _{SM}	Pulsed Source Current			400	400	400	400	400	400	400	400	400	400	400	400	400	400	100	400		integral reverse
	(Body Diode) ①		180		p-n junction diode.																
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 28A, V _{GS} = 0V ④															
t _{rr}	Reverse Recovery Time		67	101	ns	$T_J = 25^{\circ}C, I_F = 28A$															
Q _{rr}	Reverse Recovery Charge		208	312	nC	di/dt = 100A/µs ④⑤															
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)																			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $$\label{eq:starting} \begin{split} \textcircled{2} \quad & \text{Starting T}_J = 25^{\circ}\text{C}, \, L = 389 \mu\text{H} \\ & \text{R}_G = 25\Omega, \, \text{I}_{AS} = 28\text{A}. \, \, \text{(See Figure 12)} \end{split}$$
- $\label{eq:loss} \begin{array}{l} \mbox{\Large \ \ \, $J_{SD} \leq 28A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$} \\ \mbox{\Large \ \, } \end{array}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Uses IRFZ46N data and test conditions.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $\ \$ This is a calculated value limited to TJ = 175°C.
- Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 39A.

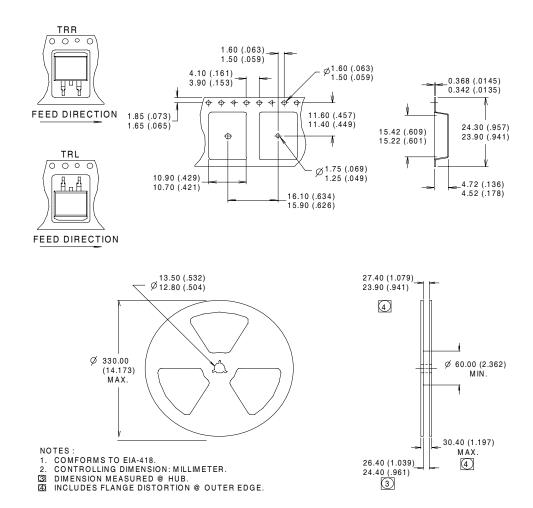

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.


IRFZ46NS/LPbF

International TOR Rectifier

D²Pak Package Outline



D²Pak Part Marking Information (Lead-Free)

IRFZ46NS/LPbF

D²Pak Tape & Reel Information

Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

