International ISR Rectifier

- Advanced Process Technology
- Surface Mount (IRFZ46NS)
- Low-profile through-hole (IRFZ46NL)
- $175^{\circ} \mathrm{C}$ Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description
Advanced HEXFET ${ }^{\circledR}$ Power MOSFETs from International Rectifierutilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device designthatHEXFET powerMOSFETsare well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The $D^{2} \mathrm{Pak}$ is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The $D^{2} \mathrm{Pak}$ is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application.
The through-hole version (IRFZ46NL) is available for lowprofile applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, V_{GS} @ 10V®	53 (8)	A
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, VGS @ 10V⑤	37	
l_{DM}	Pulsed Drain Current (1) (5)	180	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Power Dissipation	3.8	W
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Power Dissipation	107	W
	Linear Derating Factor	0.71	W/ ${ }^{\circ} \mathrm{C}$
V_{GS}	Gate-to-Source Voltage	± 20	V
$\mathrm{I}_{\text {AR }}$	Avalanche Current(1)	28	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy (1)	11	mJ
dv/dt	Peak Diode Recovery dv/dt (3) (5)	5.0	V/ns
$\begin{array}{\|l\|} \hline \mathrm{T}_{\mathrm{J}} \\ \mathrm{~T}_{\mathrm{STG}} \end{array}$	Operating Junction and Storage Temperature Range	-55 to + 175	${ }^{\circ} \mathrm{C}$
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\text {ӨJC }}$	Junction-to-Case	-	1.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJA }}$	Junction-to-Ambient (PCB Mounted,steady-state) ${ }^{\star \times}$	-	40	

IRFZ46NS/LPbF

Electrical Characteristics @ $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR)DSS }}$	Drain-to-Source Breakdown Voltage	55	--	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ID}=250 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\text {(BR) }{ }^{\text {d Ss } / \Delta T_{3}} \text {, }}$	Breakdown Voltage Temp. Coefficient	-	0.057	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}(5)$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-to-Source On-Resistance	-	-	. 0165	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=28 \mathrm{~A}$ (4)
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	2.0	-	4.0	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
g_{fs}	Forward Transconductance	19	-	-	S	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=28 \mathrm{~A}(4)$
IDSs	Drain-to-Source Leakage Current	-	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	250		$\mathrm{V}_{\mathrm{DS}}=44 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
IGss	Gate-to-Source Forward Leakage	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-	-	-100		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
Q_{g}	Total Gate Charge	-	-	72	nC	$\mathrm{I}_{\mathrm{D}}=28 \mathrm{~A}$
Q_{gs}	Gate-to-Source Charge	-	-	11		$V_{\text {DS }}=44 \mathrm{~V}$
Q_{gd}	Gate-to-Drain ("Miller") Charge	-	-	26		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$, See Fig. 6 and 13 (4) (5)
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	-	14	-	ns	$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}$
tr_{r}	Rise Time	-	76	-		$\mathrm{ID}_{\mathrm{D}}=28 \mathrm{~A}$
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time	-	52	-		$\mathrm{R}_{\mathrm{G}}=12 \Omega$
t_{f}	Fall Time	-	57	-		$\mathrm{R}_{\mathrm{D}}=0.98 \Omega$, See Fig. 10 (4) (5)
Ls	Internal Source Inductance	-	7.5	-	nH	Between lead, and center of die contact
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	1696	-	pF	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	407	-		$V_{\text {DS }}=25 \mathrm{~V}$
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	-	110	-		$f=1.0 \mathrm{MHz}$, See Fig. 55
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy (2)	-	5836	152 (7)		$\mathrm{I}_{\text {AS }}=28 \mathrm{~A}, \mathrm{~L}=389 \mathrm{mH}$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	-	-	53	A	MOSFET symbol showing the
$I_{\text {SM }}$	Pulsed Source Current (Body Diode) (1)	-	-	180		integral reverse $\mathrm{p}-\mathrm{n}$ junction diode.
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	-	-	1.3	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=28 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (4)
t_{rr}	Reverse Recovery Time	-	67	101	ns	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=28 \mathrm{~A} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}(4)(5) \end{aligned}$
$Q_{\text {rr }}$	Reverse Recovery Charge	-	208	312	nC	
$\mathrm{t}_{\text {on }}$	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $\mathrm{L}_{S}+L_{D}$)				

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
(2) Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=389 \mu \mathrm{H}$
$R_{G}=25 \Omega, I_{A S}=28 \mathrm{~A}$. (See Figure 12)
(3) $\mathrm{I}_{\mathrm{SD}} \leq 28 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 220 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$, $\mathrm{T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}$.
(4) Pulse width $\leq 400 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
(5) Uses IRFZ46N data and test conditions.
(6) This is a typical value at device destruction and represents operation outside rated limits.
(7) This is a calculated value limited to $\mathrm{TJ}=175^{\circ} \mathrm{C}$.
(8) Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 39A.
** When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note \#AN-994.

IRFZ46NS/LPbF
D2Pak Package Outline

S Y M B O L	DIMENSIONS				$\begin{aligned} & N \\ & \text { N } \\ & \text { T } \\ & \text { E } \\ & S \\ & \hline \end{aligned}$
	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	. 160	. 190	
A1		0.127		. 005	
b	0.51	0.99	. 020	. 039	
b1	0.51	0.89	. 020	. 035	4
b2	1.14	1.40	. 045	. 055	
c	0.43	0.63	. 017	. 025	
c1	0.38	0.74	. 015	. 029	4
c2	1.14	1.40	. 045	. 055	
D	8.51	9.65	. 335	. 380	3
D1	5.33		. 210		
E	9.65	10.67	. 380	. 420	3
E1	6.22		. 245		
e	2.54	BSC	. 100	BC	
L	14.61	15.88	. 575	. 625	
L1	1.78	2.79	. 070	. 110	
L2		1.65		. 065	
L3	1.27	1.78	. 050	. 070	
L4	0.25	BSC	. 010	BSC	
m	17.78		. 700		
m1	8.89		. 350		
n	11.43		. 450		
\bigcirc	2.08		. 082		
P	3.81		. 150		
θ	90°	93°	90°	93°	

SECTION A-A

NOTES:

1. DIMENSIONING AND TOLERANGING PER ASME Y14.5M-1994
2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
3. DIMENSION D \& E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"]
4. DIMENSION b1 AND c1 APPLY TO BASE METAL ONLY.
5. CONTROLLING DIMENSION: INCH.

D2Pak Part Marking Information (Lead-Free)

EXAMPLE:	THIS IS AN IRF 530S WITH
	LOT CODE 8024
	ASSEMBLED ON WW 02, 2000
	IN THE ASSE MBLY LINE "L"
	Note: "P" in as sembly line position indicates "Lead-Free"

OR

D²Pak Tape \& Reel Information

NOTES :

1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER
(3) DIMENSION MEASURED @ HUB.
(4) INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market.

International IISR Rectifier

